This platform is switching off on July 1st and we invite you to use the new OECD Data Explorer.

The legacy APIs can also be reached until June 30th but data are not updated.

If you need help to find the corresponding OECD Data Explorer dataset, please see this Excel file.


Statistics presented in this dataset correspond to a previous version of the Functional Urban Areas’ and cities’ boundaries. This dataset is no longer updated. Latest update: November 2022.

Please refer to the City Statistics dataset for the most updated version of FUA and city indicators.

Page: /7
Sort ascending within current pageSort descending within current page
Metropolitan areasInformation on dimension
Hide subtree AUS: Australia..
AUS01: Greater Sydney..
AUS02: Greater Melbourne..
AUS03: Greater Brisbane..
AUS04: Greater Perth..
AUS05: Greater Adelaide..
AUS06: Gold Coast..
AUS07: Canberra..
AUS08: Newcastle..
AUS10: Wollongong..
AUS14: Geelong..
Hide subtree AUT: Austria..
AT001: Vienna0.27
AT002: Graz0.27
AT003: Linz0.25
AT004: Salzburg..
AT005: Innsbruck..
AT006: Klagenfurt..
Hide subtree BEL: Belgium..
BE001: Brussels..
BE002: Antwerp0.30
BE003: Gent0.29
BE004: Charleroi..
BE005: Liege0.31
Hide subtree CAN: Canada..
CAN01: Toronto0.41
CAN02: Montreal0.35
CAN03: Vancouver0.40
CAN04: Ottawa..
CAN05: Calgary0.45
CAN06: Edmonton..
CAN07: Quebec..
CAN08: Winnipeg0.36
CAN09: Hamilton0.34
CAN10: London0.35
CAN11: Kitchener..
CAN12: Halifax0.34
CAN13: Victoria0.35
CAN14: Windsor0.36
CAN15: Saskatoon0.36
CAN16: Sherbrooke0.30
Hide subtree CHE: Switzerland..
CH001: Zurich..
CH002: Geneva..
CH003: Basel..
CH004: Bern..
CH005: Lausanne..
Hide subtree CHL: Chile..
CL004: Antofagasta..
CL006: Coquimbo-La Serena..
CL010: Valparaiso..
CL011: Santiago..
CL014: Rancagua..
CL017: Talca..
CL020: Concepcion..
CL022: Temuco..
CL025: Puerto Montt..
Hide subtree COL: Colombia..
COL01: Bogota D.C...
COL02: Medellin..
COL03: Cali..
COL04: Barranquilla..
COL05: Cartagena..
COL06: Bucaramanga..
COL07: Cucuta..
COL08: Pereira..
COL09: Ibague..
COL10: Manizales..
COL11: Santa Marta..
COL12: Pasto..
COL13: Armenia..
COL14: Villavicencio..
COL15: Monteria..
COL16: Valledupar..
COL17: Buenaventura..
COL18: Neiva..
COL19: Palmira..
COL20: Popayan..
COL21: Sincelejo..
COL25: Riohacha..
Hide subtree CZE: Czechia..
CZ001: Prague..
CZ002: Brno..
CZ003: Ostrava..
CZ004: Plzen..
Hide subtree DEU: Germany..
DE001: Berlin..
DE002: Hamburg..
DE003: Munich..
DE004: Cologne..
DE005: Frankfurt am Main..
DE007: Stuttgart..
DE008: Leipzig..
DE009: Dresden..
DE011: Dusseldorf..
DE012: Bremen..
DE013: Hanover..
DE014: Nuremberg..
DE017: Bielefeld..
DE018: Halle an der Saale..
DE019: Magdeburg..
DE020: Wiesbaden..
DE021: Gottingen..
DE025: Darmstadt..
DE026: Trier..
DE027: Freiburg im Breisgau..
DE028: Regensburg..
DE031: Schwerin..
Page: /7
Data extracted on 22 Jun 2024 00:49 UTC (GMT) from OECD.Stat


Please check the i to get information